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ABSTRACT 

Context Metabolomics plays a pivotal role in 

addressing a wide range of biological, 

medicinal, and environmental inquiries, 

spanning from drug development and precision 

medicine to the characterization of the dark 

chemical space of ecosystems and organisms. 

Data analytics often co-evolve to match the 

speed of analytical instruments due to technical 

advancements in mass spectrometry and 

spectroscopy platforms that facilitate the 

creation of complicated big-data sets with a 

wealth of information. 

Databases, solutions, software tools, and 

resources all assist in using the hidden 

information found in the produced data to ensure 

successful translation at the end. 

The review's objective The scientific community 

is exposed to around 85 metabolomics software 

resources, packages, tools, databases, and other 

utilities that were released in 2020 via this 

evaluation. 

Important scientific ideas for reviews Table 1 

lists the resources according on their usefulness 

and includes links to download the tools as well 

as their computational needs. In keeping with 

efforts made since 2015 to assist the community 

of metabolomics researchers in finding these 

resources in one location for future reference 

and use, the review seeks to provide the 

community with an up-to-date list of all the 

resources created in 2020. 

Key words: Metabolomics · Instrument · 

Information base · Software · Labeling · 

Metabolite · In vitro · Source · Application. 

I. INTRODUCTION  

The year 2020 has seen an enormous rise in 

applications of ion mobility mass-spectrometry 

(IMS), and data-independent acquisition (DIA) 

methods of analyses in both metabolomics and 

lipidomics. In terms of application, mass 

spectrometry as a technology promises advance 

care for cancer patients in clinical and 

intraoperative use (J. Zhang, Ge, et al., 2020; 

Zhang, Sans, et al., 2020), imaging mass 

spectrometry (MSI) based natural products 

(NPs) discovery (Spraker et al. 2020), nanoscale 

secondary ion mass spectrometry (nanoSIMS) 

usage in subcellular MS imaging and 

quantitative analysis in organelles (Thomen 

et al. 2020), capturing urban sources of 

contamination from high resolution mass 

spectrometry (HRMS) (Bowen et al., 2020) to 

detection of COVID-19 disease signatures 

(Mahmud & Garrett, 2020). 

From an analytical method development stand 

point, interesting developments such as plasma 

pseudotargeted metabolomics method using 
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ultra-high-performance liquid chromatography–

mass spectrometry (UHPLC-MS) (Zheng et al. 

2020) and the need for combined use of nuclear 

magnetic resonance spectroscopy and mass 

spectrometry approaches in metabolomics 

(Letertre et al. 2020) are notable. For volume-

limited samples, solutions such as subnanoliter 

metabolomics via LC–MS/MS such as pulsed 

MS ion generation method known as 

triboelectric nanogenerator inductive 

nanoelectrospray ionization (TENGi nanoESI) 

MS (Li et al. 2020) was introduced. Flow-

injection Orbitrap mass spectrometry (FI-MS) 

enabled reproducible detection of ~ 9,000 and ~ 

10,000 m/z features in metabolomics and 

lipidomics analysis of serum samples, 

respectively, with a sample scan time of ~ 15 s 

and duty time of ~ 30 s; a ~ 50% increase versus 

current spectral-stitching FI-MS methods 

(Sarvin et al. 2020). A spatial metabolomics 

pipeline (metaFISH) that combined fuorescence 

in situ hybridization (FISH) microscopy and 

high-resolution atmosphericpressure matrix-

assisted laser desorption/ionization mass 

spectrometry to image host–microbe symbioses 

and their metabolic interactions (Geier et al. 

2020) was also reported. Another study that 

compared the full-scan, data-dependent 

acquisition (DDA), and data-independent 

acquisition (DIA) methods in HR LC–MS/MS 

based metabolomics to reveal that spectra 

quality is better in DDA with average dot 

product score 83.1% higher than DIA and the 

number of MS2 spectra (spectra quantity) is 

larger in DIA (Guo & Huan, 2020a). 

Furthermore, it was shown that DDA mode 

consistently generated fewer uniquely found 

signifcant features than full-scan and DIA 

modes (Guo & Huan, 2020b). 

Using with Raman spectroscopy, followed by 

stimulated Raman scattering (SRS) microscopy 

and Ramanguided subcellular pharmaco-

metabolomics in metastatic melanoma cells 

revealed intracellular lipid droplets that helped 

identify a previously unknown susceptibility of 

lipid mono-unsaturation within de-diferentiated 

mesenchymal cells with innate resistance to 

BRAF inhibition (Du et al. 2020). Application 

of 31P NMR was shown to hold potential of 

expanding the coverage of the metabolome by 

detecting phosphorus-containing metabolites 

(Bhinderwala et al. 2020). 

The efectiveness of the fow injection analysis-

continuous accumulation of selected ions 

Fourier transform ion cyclotron resonance mass 

spectrometry (FIA-CASI-FTMS) workfow 

utilizing isotopic fne structure (IFS) for 

molecular formula assignment was realized for 

metabolomics applications (Thompson et al. 

2020). A bufer modifcation workfow (BMW) in 

which the same sample is run by LC–MS in both 

liquid chromatography solvent with 14NH3–

acetate bufer and in solvent with the bufer 

modifed with 15NH3–formate, resulted in 

characteristic mass and signal intensity changes 

for adduct peaks, facilitating their annotation 

(Lu et al. 2020). Towards reference materials 

standardization, quantitative measures of 

approximately 200 metabolites for each of three 

pooled reference materials (220 metabolites for 

Qstd3, 211 metabolites for CHEAR, 204 

metabolites for NIST1950) were obtained and 

supported harmonization of metabolomics data 

collected from 3677 human samples in 17 

separate studies analyzed by two complementary 

HRMS methods (K. H. Liu, Mrzic, et al., 2020; 

Liu, Nellis, et al., 2020). Another review 

highlighted the recent progresses (since 2016) in 

the feld of chemical derivatization LC–MS for 
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both targeted and untargeted metabolome 

analysis (Zhao & Li, 2020). The characterization 

of compounds by the number of labile hydrogen 

and oxygen atoms in the molecule, which can be 

measured using hydrogen/deuterium and 

16O/18O-exchange approaches allows reduction 

of the search space by a factor of 10 and 

considerably increases the reliability of the 

compound identifcation (Kostyukevich et al. 

2020). Preference for monophasic methods that 

are quicker and simpler than biphasic methods 

for their amenability and integration into future 

automation for hydrophilic interaction 

chromatography (HILIC) ultrahigh-performance 

liquid chromatography–mass spectrometry 

(UHPLC–MS) and nonpolar extracts by C18 

reversed-phase UHPLC–MS based 

metabolomics in animal tissues and biofuids 

(Southam et al. 2020) was also demonstrated. In 

other innovative applications, use of short 

columns and direct solvent switches allowed for 

fast screening (3 min per polarity), where a total 

of 50 commonly reported diagnostic or 

explorative biomarkers were validated with a 

limit of quantifcation that was comparable with 

conventional LC–MS/MS (van der Laan et al. 

2020). 

From the stand point of data analysis, 

metabolomics as a feld is starting to beneft by 

applying machine learning (ML) (Liebal et al. 

2020) and deep learning (DL) (Pomyen et al. 

2020; Sen et al. 2020) approaches to address 

diverse challenges from data preprocessing to 

biological interpretation. In the context of 

systems and personalized medicine LIONESS 

(Linear Interpolation to Obtain Network 

Estimates for Single Samples) and ssPCC 

(single sample network based on Pearson 

correlation) were evaluated and compared in the 

context of metabolite–metabolite association 

networks (Jahagirdar & Saccenti, 2020). In 

annotation domains for low resolution GC–MS 

data, usage of DL ranking for small molecules 

identifcation, a deep learning ranking model 

outperformed other approaches and enabled 

reducing a fraction of wrong answers (at rank-1) 

by 9–23% depending on the used data set 

(Matyushin et al. 2020). In the age of artifcial 

intelligence, spatial metabolomics and IMS 

promise to revolutionize biology and healthcare 

(Alexandrov, 2020). Approaches such as an 

integrated strategy of fusing features and 

removing redundancy based on graph density 

(FRRGD) were proposed that greatly enhanced 

the metabolome detection coverage with low 

abundance (Ju et al. 2020). 

For a software survey of other mass-

spectrometry derived omics tools, packages, 

resources, softwares and databases, readers can 

consult other treatise for metaproteomics 

(Sajulga et al. 2020), data‐independent 

acquisition mass spectrometry‐based proteomics 

(F. Zhang, Ge, et al., 2020; Zhang, Sans, et al., 

2020), single cell and single cell-type 

metabolomics (B. B. Misra, 2020a) among 

others. 

II. PLATFORM-SPECIFC TOOLS 

Metabolomics as a discipline depends on mass 

spectrometry and spectroscopy analytical 

platforms to generate high through put omics 

scale data. These include, and are not limited to 

liquid chromatography-mass spectrometry (LC–

MS), gas chromatography-mass spectrometry 

(GC–MS), capillary electrophoresis-mass 

spectrometry (CE-MS), and spectroscopic 

methods such as 1 H-NMR, 13C-NMR, Raman, 

and Fourier transform infrared (FTIR) among 

others. In this section, I discuss all the tools that 

appeared in 2020 for analyses of datasets that 
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are specifc to a metabolomics platform or 

technology, i.e., LC–MS, GC–MS, and NMR. 

Automated spectraL processing system for NMR 

(AlpsNMR), is an R-package that provides 

automated signal processing for untargeted 

NMR metabolomics datasets by performing 

region exclusion, spectra loading, metadata 

handling, automated outlier detection, spectra 

alignment and peak-picking, integration and 

normalization (Madrid-Gambin et al. 2020). The 

tool can load Bruker and JDX samples and can 

preprocess them for downstream statistical 

analysis. 

Signature mapping (SigMa), developed as a 

standalone tool using MATLAB dependencies, 

for processing raw urine 1 H-NMR spectra into 

a metabolite table (Khakimov et al. 2020). 

SigMa relies on the division of the urine NMR 

spectra into Signature Signals (SS), Signals of 

Unknown spin Systems (SUS) and bins of 

complex unresolved regions (BINS), thus 

allowing simultaneous detection of urinary 

 

 

 

 
metabolites in large-scale NMR metabolomics 

studies using a SigMa chemical shift library and 

a new automatic peak picking algorithm. NMR 

flter, is a stand-alone interactive software for 

highconfdence NMR compound identifcation 

that runs NMR chemical shift predictions and 

matches them with the experimental data, where 

it defnes the identity of compounds using a list 

of matching rates and correlating parameters of 

accuracy together with fgures for visual 

validation (Kuhn et al. 2020). MSHub/ electron 
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ionisation (EI)-Global Natural Product Social 

(GNPS) Molecular Networking analysis, as a 

platform enables users to store, process, share, 

annotate, compare and perform molecular 

networking of both unit/ low resolution and GC–

HRMS data (Aksenov et al. 2020). GNPS-

MassIVE is a public data repository for 

untargeted MS2 data, EI-MS data, with sample 

information (metadata) and annotated MS2 

spectra (Aron et al. 2020). MSHub performs the 

auto-deconvolution of compound fragmentation 

patterns via unsupervised non-negative matrix 

factorization and quantifes the reproducibility of 

fragmentation patterns across samples, followed 

by GNPS molecular networking analyses. 

RGCxGC toolbox, is an R-package that aids in 

analysis of two dimensional gas 

chromatography-mass spectrometry (2D GC–

MS) data by ofering pre-processing algorithms 

for signal enhancement, such as baseline 

correction based on asymmetric least squares, 

smoothing based on the Whittaker smoother, and 

peak alignment 2D Correlation Optimized 

Warping and multiway principal component 

analysis (Quiroz-Moreno et al. 2020). 

III. PREPROCESSING AND QUALITY 

CONTROL (QC) TOOLS 

In untargeted metabolomics workflows that use 

either LC–MS/MS, GC–MS or NMR, depend a 

lot on pre-processing of the acquired raw 

datasets prior to statistical analyses and 

interpretation. Preprocessing typically involves 

tools that aid in the detection of masses (as 

m/z’s) from mass spectra (i.e., feature 

detection), construct and display extracted ion 

chromatograms, detect chromatographic peaks, 

deconvolution, peak alignment, data matrix 

curation steps such as batch and blank 

corrections to fltration and normalization steps, 

and quality assessments. Though, there are 

decade old popular preprocessing tools available 

to the community in the form of xcms 

(Tautenhahn et al. 2008), MZmine 2 (MZmine 

Development Team 2015), MS-DIAL (Tsugawa 

et al. 2015) there is a consistent efort to improve 

the workfows- from reducing computational 

time, to developing graphical user interfaces 

(GUIs) for users to render them user friendly to 

addressing challenges associated with 

interpretation of data from advanced platforms 

such as HRMS data or those from IMS, MSI etc. 

In fact, a recent comparative efort (among 

software tools such as software packages 

MZmine 2, enviMass, Compound Discoverer™, 

and XCMS Online) demonstrated a low 

coherence between the four processing tools, as 

overlap of features between all four programs 

was only about 10%, and for each software 

between 40 and 55% of features did not match 

with any other program (Hohrenk et al. 2020). 

Moreover, quality control (QC) tools are 

important to take care of systematic and random 

variations/ errors induced during experimental 

and analytical workfows. Batch efects can pose 

a lot of challenges, i.e., introduction of 

experimental artifacts that can interfere with the 

measurement of phenotype‐related metabolome 

changes in metabolomics data (Han & Li, 2020), 

and data normalization strategies, tools, and 

software solutions available are reviewed to 

circumvent some of these challenges (B. B. 

Misra, 2020b). In this section, I cover the 

preprocessing and the QC tools that appeared in 

2020. Correlation-based removal Of 

multiPlicities (CROP), implemented as an R-

package is a visual post-processing tool that 

removes redundant features from LC–MS/MS 

based untargeted metabolomic data sets (Kouřil 

et al. 2020), where it groups highly correlated 

features within a defned retention time (RT) 
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window avoiding the condition of specifc m/z 

diference making it a second-tier strategy for 

multiplicities reduction. The output is a 

graphical representation of correlation network 

allowing a good understanding of the clusters 

composition that can aid in further parameter 

tuning. neighbor-wise compound-specific 

Graphical Time Warping (ncGTW), is an 

integrated reference-free profle alignment 

method, implemented as an R-package and is 

available as a plugin for xcms that aids in 

detecting and fxing the bad alignments 

(misaligned feature groups) in the LC–MS data 

to render accurate grouping and peak-flling (Wu 

et al. 2020). TidyMS, is a Python package for 

preprocessing of untargeted LC–MS/MS derived 

metabolomics data that reads raw data fro-m a 

.mzML fle format, generates spectra and total 

ion chromatograms (TICs), allows peak picking, 

feature detection, reads processed data from 

xcms, MZmine 2 among others, ofers 

functionalities for data matrix curation, 

normalization, imputation, scaling, quality 

metrics, QC-based batch corrections and 

interactive visualization of results (Riquelme 

et al. 2020). AutoTuner, available as an R-

package, is a parameter optimization algorithm 

that obtains parameter estimates from raw data 

in a single step as opposed to many iterations in 

a data-specifc manner to generate robust features 

from untargeted LC–MS/MS runs (McLean & 

Kujawinski, 2020). For input, AutoTuner 

requires at least 3 samples of raw data converted 

from proprietary instrument formats (e.g. 

.mzML, .mzXML, or .CDF). 

IV. ANNOTATION TOOLS 

Metabolite annotation remains a critical step that 

defnes the success or failure of untargeted 

metabolomics eforts. With newer technologies 

such as collision cross section (CCS) data for 

ion mobility, high resolution mass spectra from 

Orbitrap, direct injection data, data independent 

acquisition (DIA)/ all ion fragmentation (AIF), 

imaging MS and multi-dimensional 

chromatography the annotation results have 

gained additional impetus in compound 

identifcation, but these methods have ofered 

newer challenges in themselves for tool 

development. False discovery rates (FDRs) of 

annotations indicate that low FDRs yield low 

number yet reliable annotations, whereas higher 

FDR report high number of annotations by those 

of poor-quality annotations. Though metabolite 

annotation eforts can beneft from RT as an 

orthogonal information, eforts for combining RT 

predictions with MS/MS data is currently 

lacking (Witting & Böcker, 2020). Clearly 

reference spectra and spectral DBs/ libraries are 

not enough to annotate roughly 5–30% of the 

total features captured (depending on the 

environmental/ biological matrices in question) 

in a given mass spectrometry-based 

metabolomics dataset. Though experimentally 

obtained MS/MS data and NMR data on pure 

standards are precious, and aid in development 

of computational solutions for compound 

identifcation, they do not sufce at their current 

numbers, accessibility, and availability. 

Moreover, in 2020, the Metabolite Identifcation 

Task Group of the International Metabolomics 

Society assessed and proposed a set of revised 

reporting standards for metabolite annotation/ 

identifcation and requested community feedback 

for levels from A-G, from defning an 

enantiomer or a chiral metabolite (level A) (to 

unknown molecular formula with specifc 

spectral features (G). Once formalized, these 

would positively afect and improve reporting 

standards in studies and the publication 

landscape in metabolomics research. In Fig. 1, 2, 
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3, shown are the software interfaces and analysis 

outputs for some of the annotation tools 

discussed in the following sections. 

V. DATABASES 

In this section, I discuss the databases (both 

spectral and structural) that have appeared or 

updated in 2020. COlleCtion of Open Natural 

prodUcTs (COCONUT), is available as a 

webserver (with downloadable structural data on 

NPs) an aggregated dataset of NPs from diferent 

open resources and ofers a subsequent web 

interface to browse, search and easily and 

quickly download NPs (Sorokina & Steinbeck, 

2020). The DB contains structures and sparse 

annotations for over 400,000 non-redundant 

NPs. METLIN MS2, is chemical standards 

spectral DB that is well annotated and 

structurally diverse database consisting of over 

850,000 chemical standards with MS/MS data 

generated in both positive and negative 

ionization modes at multiple collision energies 

(CEs), collectively containing over 4,000,000 

curated HR MS/MS data that covers almost 1% 

of PubChem’s 93 million compounds (Xue et al. 

2020). EMBL-MCF, is an open LC–MS/MS 

spectral library that currently contains over 1600 

fragmentation spectra obtained from 435 

authentic standards of endogenous metabolites 

and lipids (Phapale et al. 2021). The EMBL-

MCF spectral library is created and shared using 

an in-house developed web-application. The 

Wake Forest CPM GC–MS spectral and RT 

libraries consist of HR EI-MS and HR chemical 

ionization (CI)- MS/MS spectra obtained from 

silylated chemical standards obtained from the 

Mass Spectrometry Metabolite Library of 

Standards (MSMLS Kit™) (B. B. Misra & 

Olivier, 2020). Chemical Shift Multiplet 

Database (CSMDB), is a database that uses 

JRES spectra obtained from the Birmingham 

Metabolite Library (BML), to provide scores by 

accounting for both matched and unmatched 

peaks from a query list and the database hits 

(Charris-Molina et al. 2020). This input list is 

generated from a projection of a 2D statistical 

correlation analysis on the J-RESolved (JRES) 

spectra, p-[JRESStatistical TOtal Correlation 

SpectroscopY (STOCSY)], being able to 

compare the multiplets for the matched peaks. 

The CSMDB is complemented with 

“consecutive queries to assess biological 

correlation” (ConQuer ABC), a simple 

inspection of peaks left unmatched from the 

query list and consecutive queries to assign all 

(or most) peaks in the original query list. 

 

VI. OTHER SPECIALIZED TOOLS 

This section covers numerous tools that did not 

quite fall into the six categories listed above, and 

are developed with a purpose to address a 

specialized application to facilitate 

metabolomics data analysis. These tools include 

the ones developed for isotopic data analysis in 

stable isotope labelling experiments, softwares 

for analysis of lipidomics data, mass 

spectrometry imaging data, and multiomics/ 

integrated omics analysis. Mass isotopolome 

analysis for mode of action identifcation 

(MIAMI), is a tool that uses MetaboliteDetector 

(https://md.tu-bs.de/) and non-targeted tracer 

fate detection (NTFD) libraries 

(http://ntfd.mit.edu/), combines the strengths of 

targeted and non-targeted eforts for estimation 

of metabolic fux changes in GC–MS datasets 

(Dudek et al. 2020). In stable isotope labeling 

experimental data, MIAMI determines a mass 

isotopomer distribution-based (MID) similarity 

network and incorporates the data into metabolic 

reference networks and aids in the identifcation 

of MID variations of all labeled metabolites 
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across conditions, targets of metabolic changes 

are detected. isoSCAN, is an R-package that 

automatically quantifes all isotopologues of 

intermediate metabolites of glycolysis, 

tricarboxylic acid (TCA) cycle, amino acids, 

pentose phosphate pathway, and urea cycle, 

from low resolution (LR) MS and HRMS data 

(i.e., GC-chemical ionization -MS) in stable 

isotope labeling experiments (Capellades et al. 

2020). LiPydomics, is available as a Python 

package which performs statistical and 

multivariate analyses (“stats” module), generates 

informative plots (“plotting” module), identifes 

lipid species at diferent confdence levels 

(“identifcation” module), and performs a text-

based interface (“interactive” module) aiding in 

further interpretation (Ross et al. 2020). 

LipidCreator, is available both as a Skyline 

plugin and a standalone/command-line 

operation, is a lipid building block-based 

workbench and knowledgebase for semi-

automatic generation of targeted lipidomics MS 

assays and in silico spectral libraries (Peng et al. 

2020). It can support diverse lipid categories, 

allows SRM/ parallel reaction monitoring 

(PRM) assay generation for both labeled and 

unlabeled lipid species and their derived 

fragment ions, allows in silico spectral library 

generation and CEs optimization and the entire 

workfow can be integrated into Konstanz 

Information Miner (KNIME™) and Galaxy 

workfows as a native node. Lipid Annotator, is a 

standalone software for lipidomic analysis of 

data collected by HR LC–MS/MS (Koelmel 

et al. 2020). Lipid Annotator algorithm, intended 

for lipid annotation based on in-silico libraries, 

consists of fve general steps: feature fnding, 

association of MS/MS scans with features, 

annotation of possible lipids for each feature, 

calculation of the percent abundance of each 

fatty acyl constituent under a single 

chromatographic peak in the case of mixed 

spectra, and fltration of fnal annotated features. 

Lipid Annotator can be used on large datasets 

for rapid annotation, relative quantifcation, and 

statistics (using a downstream workfow with 

commercial tools such as MassHunter Profnder 

(Agilent Technologies) and MassHunter Mass 

Profler Professional softwares (Agilent 

Technologies). 

 

VII. CONCLUSION 

In conclusion, it is evident that a great deal of 

tools were created in 2020 alone, either entirely 

from scratch or as an evolution of earlier 

iterations. Certain techniques and instruments 

discovered new uses, as GNPS in the field of 

GC–MS-based metabolomics (Aksenov et al. 

2020), or were made available as a beta or 

enhanced version, like MS-DIAL for lipidomics 

(Tsugawa et al. 2020) workflows. 

Which of these 2020 tools survives another year 

in terms of usefulness or applicability, is kept up 

to date and accessible, is enhanced, and is 

embraced by the metabolomics research 

community will depend only on what comes 

next. Whatever the case, these tools are all 

helpful in comprehending metabolomics data 

from many perspectives and are valuable 

contributions to the community as we go into the 

big data-driven precision medicine age. 

Generally speaking, the tendency is to create 

robust, user-friendly, open-source, quick, and 

computationally light tools that can follow the 

findable, accessible, interoperable, and 

repeatable (FAIR) principles. The metabolomics 

research community surely needs more of these 

enhanced tools, and in the next years, more and 

better tools, resources, and databases will be 

made available. 
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